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In this paper, we study a nonlocal nonlinear Schrödinger equation (NNLSE). The infinitesimal generator, symmetry group 

and similarity reductions are obtained by the aid of Lie group method. Subsequently, similarity solutions of NNLSE are 

derived from the reduction equations. Finally, the auxiliary function method gives some exact solutions. Results show that 

these solutions which we obtain can be used to study relating physical problems. 
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1. Introduction 

 

Since Zabusky and Kruskal defined the name soliton 

in 1965, soliton theory has been developed rapidly [1]. 

The nonlinear optics was best used to reflect the diversity 

of optical solitons. Optical solitons includes spatial optical 

solitons, temporal optical solitons, and spatiotemporal 

optical solitons. It was obtained from the balance between 

optical pulse broadening caused by dispersion (or 

diffraction) and optical pulse compression caused by 

nonlinear effects [2-3]. It is well known that the nonlocal 

nonlinear Schrödinger equation (NNLSE) plays a very 

important role in many branches of mathematics and 

physics. The dynamics of (1+1)-dimensional (one spatial 

and one temporal variables) spatial optical soliton is the 

NNLSE in nonlocal nonlinear media. The NNLSE can be 

regarded as the most important soliton equation. 

Therefore, the study of the NNLSE has important 

theoretical and applied significance. Its form is given as 

follows [4-6]:  
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where u(x,t) is the normalized slowly varying amplitude, s 

=  1 corresponds to focusing (s = +1) or defocusing             

(s = -1)  nonlinearity. According to the width of response 

function R(x) relative to the width of the optical pulse 

intensity u(x,t)
2
, the degree of nonlocality is divided into 

three types: weak, general and strong. The recent studies 

show that the weakly and strongly nonlocal nonlinear Kerr 

media is of concern [7-9]. For a strongly nonlocal 

nonlinear Kerr media [7-9], the nonlinear term in Eq.(1) 

reduces to su(a+bx+cx
2
), a,b,c are real constants, and for a 

weakly nonlocal nonlinear Kerr media[8], the nonlinear 

term in Eq.(1) reduces to 
 2 22

xsu u u  
  , 

   21/ 2 x R x dx




 
. 

In this paper, we consider the (1+1)-dimensional 

spatial optical soliton in weakly nonlocal nonlinear 

non-Kerr media with an external potential, for parabolic 

law nonlinearity or cubic-quintic nonlinearity (polynomial 

law nonlinearity of second order), its form is given as 

follows: 

2 4 2
0t xx xx

iu au b u u b u u c u u pu     
 

(2) 

where p represents an external potential, a,b,c and p are 

real constants. 

Seeking the exact solutions of the NNLSE has been an 

interesting and hot topic since a long time ago [10-14]. 

Similarity solutions and solitary wave solutions are usually 

used to describe physical phenomena and to check on the 

reliability and accuracy of numerical algorithm, so getting 

similarity solutions and solitary wave solutions has a great 

significance. To the best of our knowledge, related 

classical Lie group method and auxiliary function method 

have not been preformed to the NNLSE [11,15]. 

In this paper, we first perform Lie symmetry analysis 

[15-23] for the NNLSE (2). Then, we discuss the Lie 

symmetry group, similarity reductions and reduction 

equations of Eq.(2). Finally, by using the auxiliary 

function method, we obtain Hyperbolic function solutions, 

Elliptic function solutions and so on. 
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2. Lie symmetry analysis and exact solutions  

  of NNLSE 

 

2.1. Lie symmetry analysis of NNLSE 

 

In this section, we will perform Lie symmetry analysis 

for Eq.(2), and obtain its infinitesimal generator and 

symmetry groups. To this aim, we first use the following 

transformation 

iu ve   ,               (3) 

we can get 

i i

t t tu v e i e v    ,            (4) 

2 22i i i i

xx xx x x xx xu v e ie v iv e i e v          , (5) 

2 22 2x xxxx
u v vv   .          (6) 

Substituting (4)-(6) into Eq.(2), separating the real and 

imaginary part, we can obtain 
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(7) 

According to the method of determining the 

infinitesimal generator of NPDEs, we can obtain the 

infinitesimal generator of Eq.(7) as follows: 
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where  , , ,x t v  ,  , , ,x t v  ,  1 , , ,x t v   and 

 2 , , ,x t v   are coefficient functions of the 

infinitesimal generator to be determined. 

Using the invariance condition    2
| 0pr V   , 

where  is Eq.(7) and  2
pr V  is the second prolongation 

of V . Applying the second prolongation of V  to Eq.(7), 

and with help of Maple software, we can obtain 

1

1 2 3 1 4 2, , , 0
2

xc
c t c c c

a
            (9) 

where 
1 2 3 4, , ,c c c c  are arbitrary constants. 

We can obtain the corresponding geometric vector 

fields of Eq.(7) as follows: 
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2
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V V V V t
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  (10) 

Then, all of the infinitesimal generators of Eq.(7) can 

be expressed as 

1 1 2 2 3 3 4 4 .V c V c V c V c V           (11) 

To obtain the group transformation which is generated 

by the infinitesimal generators iV  for i = 1,2,3,4, we 

should solve the following initial problems of ordinary 

differential equations: 
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where  
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and  is a group parameter. 

Exponentiating the infinitesimal symmetries of Eq.(7), 

we can obtain the one-parameter groups  ig   

generated by iV  for i = 1,2,3,4 

   1 : , , , , , , ,g x t v x t v     

   2 : , , , , , , ,g x t v x t v     

 3 : , , , , , , ,
2

x
g x t v x t t v

a


  

 
   

 
 

   4 : , , , , , , ,g x t v x t v     

where 1g  is a space translation, 2g  is a time translation, 

  is an arbitrary constant. 
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Using the above groups ig  (i = 1,2,3,4), if 

   , , ,f x t v h x t    is a known solution of Eq.(7), 

we can obtain the corresponding new solutions ,i iv  (i 

= 1, 2,3,4) respectively as follows: 

   1 1, , , .f x t v h x t       

   2 2, , , .f x t v h x t       

   3 31 , , ,
2

x
f x t t v h x t t

a


  

 
     
 

. 

   4 4, , ,f x t v h x t    . 

According to the known solution 

   , , ,f x t v h x t   , by using one-parameter 

symmetry groups ig  (i = 1,2,3,4) continuously, one can 

get a new solution which can be expressed as the 

following form: 

 3

1 3 2 41 , ,
2

x
f x t t

a


    

 
      
 

 

 1 3 2,v h x t t      , 

where i  (i = 1,2,3,4) are arbitrary constants. 

 

2.2. Symmetry reductions and exact solutions of  

    NNLSE 

 

In the section, we will obtain similarity variables and 

its reduction equations, and get similarity solutions by 

solving the reduction equations. 

Case 1. For the infinitesimal generator 
1 ,V

t





the 

similarity variables are    , , ,r x F r G r v    

and the group-invariant solution is 

   ,F r v G r    . Substituting the 

group-invariant solution into Eq.(7), the reduction 

equation as follows: 

2 2

2 3 5

2 0,

2

2 0.
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     (13) 

Case 2. For the infinitesimal generator 
2 ,V

x





 the 

similarity variables are ,r t   ,F r    ,G r v  

and the group-invariant solution is 

 F r  ,  v G r . Substituting the group-invariant 

solution into Eq.(7), the reduction equation as follows: 

3 5

0,

0.
{ r

r

G

F G bG b G pG



    

  (14) 

Eq.(7) has a solution 1 2,,c v c    where 1c , 2,c are 

arbitrary constants. Obviously, the solution is not 

meaningful. 

Case 3. For the infinitesimal generator
4

2

x
V t

x a 

 
 

 
, 

the similarity variables are 

,r t  
24

,
4

at x
F r

at

 
   ,G r v  and the 

group-invariant solution is 

 
2

4

x
F r

at
   ,  v G r . Substituting the 

group-invariant solution into Eq.(7), the reduction 

equation as follows: 

 

3 5

1
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2

0.
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G G
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      (15) 

 

Case 4. For the infinitesimal generator 

5 1 2 ,V kV dV k d
t x

 
   

 
the similarity variables are 

,r kx dt   F r  ,   ,G r v  and the 

group-invariant solution is  F r  ,  v G r . 

Substituting the group-invariant solution into Eq.(7), the 
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reduction equation as follows: 

2 2

2 2 2 2 2

2 2 3 5

2 0,

2

2 0.

{ r r r rr

r rr r r

rr

dG ak G F ak GF
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     16) 

Case 5. For the infinitesimal generator 

6 1 4 ,
2

x
V V V t

t x a 

  
    

  
 the similarity 

variables are 
22 ,r x t    

 22 6

6

x t t xt a
F r

a

   
  , 

  ,G r v and the group-invariant solution is 

 
 2 2

6

xt t x t
F r

a


 
  ,  v G r . Substituting the 

group-invariant solution into Eq.(7), the reduction 

equation as follows: 
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3. Auxiliary function method for NNLSE 

 

In this section, solitary wave solutions and similarity 

solutions of Eq. (2) that will be obtained by auxiliary 

function method. We first use the following transformation 

i tu e  ,             (18) 

substituting (18) into Eq.(2), we can get the following 

equation 
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  (19) 

 

we solve Eq.(19) by auxiliary function method, and get 

 x . We seek solutions of Eq.(19) in a power series of 

the form 

   
0

,
n

i

i

i

x A   


           (20) 

where    2 3sec , 0,1,...,ih c c x A i n     and ic  (i 

= 1,2,3) are the constants to be determined. Balancing the 

highest order item with the nonlinear term in Eq.(20) gives 

1n  .  

    We can seek the solution of Eq.(20) in the form  

    0 1x A A              (21) 

Substituting (21) into Eq.(19) and setting the 

coefficients of 
i  to zero, we obtain a set of algebraic 

equations. Solving these algebraic equations with the aid 

of Maple software, we obtain following solutions 

Case 1. 

(1) When 
4 0,c      4 2 3secx c h c c x   ,   (22) 

where  

 2 2
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    ,
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3 4 32 3
,
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  . 

(2) When   0, 0,a p bc     and 

 2 212 3 0,c p a b abc      
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sec ,
c p p

x h x
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 (23) 

Where 
1

1 , , ,
2

a c s b s     2 ,
b


   

nonlocal coefficient  

 
1

,
2

R x dx




  third and fifth-order nonlinear 

coefficient 1 and 2 , potential outfield p , frequency 

 , amplitude  x .It is easy to obtain the analytical 

solution of Eq.(2), we call  ,u x t  is an analytical bright 

soliton solution [15]. 

Using the similarity method, we can also obtain the 

following explicit analytic solutions of Eq.(19) 
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Case 2. 

When 
4 0c   ,    4 2 3tanhx c c c x   ,   (24) 

where  
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where  
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When 
1 0,c   
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Case 5. 

When   0, 0a p bc    , and  

 2 212 3 0,c p a b abc      
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where 
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1 , , ,
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b
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1

,
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  third and fifth-order nonlinear 

coefficient 1 and 2 , potential outfield p , frequency 

 , amplitude  x . It is easy to obtain the analytical 

solution of Eq.(2), we call 
 ,u x t

 is an analytical 

singular solution [15]. 

 

Case 6. 

When   0, 0a p bc    , and  
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where 
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nonlocal coefficient  
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  third and fifth-order nonlinear 
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coefficient 1 and 2 , potential outfield p , frequency 

 , amplitude  x . It is easy to obtain the analytical 

solution of Eq.(2), we call 
 ,u x t

 is a delta singular 

periodic solution [15]. 

 

 

4. Conclusions 

 
In this paper, based on Lie group method, we study 

the symmetry reductions and exact solutions of a nonlocal 
nonlinear Schrödinger equation. First, we perform Lie 
symmetry analysis for the nonlocal nonlinear Schrödinger 
equation and obtain its infinitesimal generator, symmetry 
group. Next, using similarity variables to obtain reduction 
equations, we get similarity solutions of Eq.(7) by solving 
the reduction equation. In the end, we use auxiliary 
function method to obtain exact solutions of the nonlocal 
nonlinear Schrödinger equation. In future work, we will 
consider the nonlocal nonlinear Schrödinger equation with 
polynomial law of high order. 

 

 

References 

 

 [1] N. J. Zabusky, M. D. Kruskal, Phys. Rev. Lett. 15,  
    240 (1965). 
 [2] G. P. Agrawal, Nonlinear Fiber Optics; Academic  
    Press: New York, 2007. 
 [3] H. Triki, T. R. Taha, Chaos Solitons Fract. 42, 1068  
    (2009). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 [4] J. Jia, J. Lin, Optics Express 20, 7469 (2012). 
 [5] S. P. Gorza, B. Deconinck, P. H. Emplit, T. Trogdon,  
    M. Haelterman, Phys. Rev. Lett. 106, 094101 (2011). 
 [6] Ken-ichi Maruno, Yasuhiro Ohta, Physics Letters A  
    372, 4446 (2008). 
 [7] W. Krolikowski, O. Bang, J. J. Rasmussen, J. Wyller,  
    Physical Review E 64, 016612 (2001). 
 [8] W. P. Zhong, L. Yi, R. H. Xie, M. Beli´c, G. Chen, J.  
    Phys. B: At. Mol. Opt. Phys. 41, 025402 (2008). 
 [9] D. Q. Lu, Y. J. Zheng, Y. B. Liang, L. G. Cao, S. Lan,  
    Q. Guo, Phys. Rev. A 78, 043815 (2008). 
[10] D. Mihalache, N. C. Panoiu, Journal of Mathematical  
    Physics 33, 2323 (1992). 
[11] M. L. Wang, Y. Zhou, Z. Li, Phys. Lett. A 216, 67  
    (1996). 
[12] Y. Geng, J. Li, Applied Mathematics and  
     Computation. 195, 420 (2008). 
[13] V. I. Kruglov, A. C. Peacock, J. D. Harvey, Physical  
    Review E 71, 056619 (2005). 
[14] Z. Q, Y. D, D. S, et al. Optik-International Journal for  
    Light and Electron Optics 124, 5683 (2013). 
[15] W. Bluman, Similarity Methods for Differential  
    Equations, Springer, 1974. 
[16] G. W. Wang, Appl. Math. Lett. 56, 56 (2016). 
[17] G. W. Wang, T. Z. Xu, Laser Physics 25(5) 5402  
    (2015). 
[18] P. J. Olver, Application of Lie Group to Differential  
    Equation, Springer, New York, 1986. 
[19] G. Wang, A. H. Kara, Chaos, Solitons and Fractals.  
    81, 290 (2015). 
[20] G. Wang, K. Fakhar, Computers and Fluids 119, 143  
    (2015). 
[21] G. W. Wang, A. H. Kara, K. Fakhar, Nonlinear Dyn.  
    82, 281 (2015). 
[22] G. Wang, A. H. Kara, K. Fakhar, Nonlinear Dyn. 83,  
    2281 (2016). 
[23] G. Wang, A. H. Kara, K. Fakhar, J. Vega-Guzman, A  
    Biswas, Solitons and Fractals 86, 8 (2016). 
 
 
 

__________________ 
*Corresponding author: pukai1121@163.com 


